一、数组
1、定义
N个相同数据类型的的数据元素组成的有限序列,且该有限序列必须存储在一块地址连续的存储单元中。数组是对一般线性表的扩充。
注意: 数组长度固定,元素类型一致,没有链式映像,因为不能保证地址连续
2、存储与实现
(1)、行优先
将数组元素按行向量排列,第i+1个行向量紧接在第i个行向量后面。
按行优先顺序存储的二维数组Amn地址计算公式:
LOC(aij)=LOC(a11)+[(i-1)×n+j-1]×d
-
LOC(a11)是开始结点的存放地址(即基地址)
-
d为每个元素所占的存储单元数
(2)、列优先
将数组元素按列向量排列,第i+1个列向量紧接在第i个列向量后面。
按列优先顺序存储的二维数组Amn地址计算公式:
LOC(aij)=LOC(a11)+[(j-1)×m+i-1]×d
-
LOC(a11)是开始结点的存放地址(即基地址)
-
d为每个元素所占的存储单元数
二、广义表
1、概念
广义表是n (n>=0)个元素a1,a2,a3,…,an的有限序列,其中ai或者是原子项,或者是一个广义表。通常记作LS=(a1,a2,a3,…,an)。LS是广义表的名字,n为它的长度。若ai是广义表,则称它为LS的子表。
2、存储结构
(1)、头尾链表的存储结构
需要两种结构的结点,一种是表结点(广义表),一种是原子结点(原子)。
原子结点:
表结点:
(2)、同层结点链存储结构
其原子结点和表结点由三个域构成:
三、矩阵的压缩存储
1、对称矩阵
数据元素沿主对角线对应相等,这类矩阵称为对称矩阵。
2、三角矩阵
主对角线下的数据元素全部相同的矩阵为上三角矩阵,主对角线上元素全部相同的矩阵为下三角矩阵。
对于这类特殊的矩阵,压缩存储的方式是:上(下)三角矩阵采用对称矩阵的方式存储上(下)三角的数据(元素 0 不用存储)。
3、稀疏矩阵
如果矩阵中分布有大量的元素 0,即非 0 元素非常少,这类矩阵称为稀疏矩阵。
(1)、三元组表示法
在进行保存时,需要把矩阵中的行数,列数,非零元素个数,矩阵中的数据都保存在data数据域(数组),在data数据域中的每个数据元素都是以三元组(行号,列号,元素值)形式存储,data域中表示的非零元素通常以行序为主序顺序排列,下标按行有序的存储结构。
(2)、十字链表表示法
down 和right分别指向该列和该行的下一个元素
Data保存的是该非零元素的信息(包括行,列,以及存储的元素值)