没有合适的资源?快使用搜索试试~ 我知道了~
dcurves:决策曲线分析
共49个文件
r:12个
rd:9个
png:5个
5星 · 超过95%的资源 需积分: 31 9 下载量 73 浏览量
2021-04-21
02:49:06
上传
评论
收藏 133KB ZIP 举报
温馨提示
决策曲线分析 诊断和预后模型通常使用无法解决临床后果的准确性衡量指标进行评估。 决策分析技术可以评估临床结果,但通常需要收集其他信息,并且可能不适用于产生连续结果的模型。 决策曲线分析是一种评估和比较包含临床后果的预测模型的方法,仅需要测试模型的数据集,即可应用于具有连续或二分结果的模型。 安装 您可以使用以下方法从安装dca: # install.packages("devtools") devtools :: install_github( " ddsjoberg/dcurves " ) 例子 评估预测二进制端点的模型。 library( dcurves ) dca( cancer ~ cancerpredmarker , data = df_binary , thresholds = seq( 0 , 0.35 , 0.01 ), label = lis
资源详情
资源评论
资源推荐
收起资源包目录
dcurves-master.zip (49个子文件)
dcurves-master
README.Rmd 2KB
man
df_binary.Rd 697B
as_tibble.dca.Rd 441B
figures
README-example-1.png 5KB
README-example-2.png 5KB
README-example2-1.png 5KB
README-pressure-1.png 4KB
README-example1-1.png 5KB
df_surv.Rd 706B
print.dca.Rd 389B
reexports.Rd 599B
dcurves-package.Rd 1KB
df_case_control.Rd 709B
dca.Rd 2KB
autoplot.dca.Rd 966B
pkgdown
_pkgdown.yml 756B
data
df_surv.rda 25KB
df_binary.rda 20KB
df_case_control.rda 20KB
data-raw
dca.csv 42KB
DATASET.R 488B
NAMESPACE 367B
.github
workflows
test-coverage.yaml 2KB
R-CMD-check.yaml 4KB
pr-commands.yaml 2KB
pkgdown.yaml 2KB
.gitignore 7B
NEWS.md 180B
tests
testthat
test-autoplot.R 158B
test-as_tibble.R 159B
test-dca.R 243B
testthat.R 58B
LICENSE 47B
dcurves.Rproj 386B
vignettes
dca.Rmd 11KB
.gitignore 11B
.Rbuildignore 183B
codecov.yml 232B
LICENSE.md 1KB
.gitignore 79B
R
reexport.R 554B
autoplot.R 2KB
data.r 2KB
print.R 331B
dca.r 10KB
dcurves-package.R 335B
as_tibble.R 272B
DESCRIPTION 1KB
README.md 2KB
共 49 条
- 1
<!-- README.md is generated from README.Rmd. Please edit that file -->
<!-- badges: start -->
[![R-CMD-check](https://github.com/ddsjoberg/dcurves/workflows/R-CMD-check/badge.svg)](https://github.com/ddsjoberg/dcurves/actions)
[![Codecov test
coverage](https://codecov.io/gh/ddsjoberg/dca/branch/master/graph/badge.svg)](https://codecov.io/gh/ddsjoberg/dcurves?branch=master)
<!-- badges: end -->
# Decision Curve Analysis
Diagnostic and prognostic models are typically evaluated with measures
of accuracy that do not address clinical consequences. Decision-analytic
techniques allow assessment of clinical outcomes but often require
collection of additional information and may be cumbersome to apply to
models that yield a continuous result. Decision curve analysis is a
method for evaluating and comparing prediction models that incorporates
clinical consequences, requires only the data set on which the models
are tested, and can be applied to models that have either continuous or
dichotomous results.
## Installation
You can install dca from [GitHub](https://github.com/) with:
``` r
# install.packages("devtools")
devtools::install_github("ddsjoberg/dcurves")
```
## Examples
To assess models predicting binary endpoints.
``` r
library(dcurves)
dca(cancer ~ cancerpredmarker,
data = df_binary,
thresholds = seq(0, 0.35, 0.01),
label = list(cancerpredmarker = "Prediction Model")) %>%
autoplot(smooth = TRUE)
#> Assuming '1' is [Event] and '0' is [non-Event]
```
<img src="man/figures/README-example1-1.png" width="100%" />
Time-to-event or survival endpoints
``` r
dca(Surv(ttcancer, cancer) ~ cancerpredmarker,
data = df_surv,
time = 1,
thresholds = seq(0, 0.50, 0.01),
label = list(cancerpredmarker = "Prediction Model")) %>%
autoplot(smooth = TRUE)
```
<img src="man/figures/README-example2-1.png" width="100%" />
HomeTalk
- 粉丝: 28
- 资源: 4588
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论1